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Goal of this series of talks.

The goal of these talks is threefold )

@ Category theory aimed at “free formulas” and their combinatorics

@ How to construct free objects

@ w.r.t. a functor with - at least - two combinatorial applications:
@ the two routes to reach the free algebra
@ alphabets interpolating between commutative and non commutative
worlds
@ without functor: sums, tensor and free products
© w.r.t. a diagram: limits

© Representation theory.

© MRS factorisation: A local system of coordinates for Hausdorff groups and
fine tuning between analysis and algebra.

© This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimer. — The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT]24] On the rdle of local analysis in the computation
of polylogarithms and harmonic sums Il.

© In the preceding weeks, we have considered the MRS factorization which is
one of our precious jewels.

N
DX::ZW®W:ZSW®PW: H exp(S1 ® Py) (1)
weX* weX* IeLynX

© Last week, we have seen how to extend the indexation of Polylogarithmic
functions and Harmonic sums.

© But Polylogarithmic functions are ruled out by shuffles and Harmonic sums
by stuffle or Hadamard products.

@ We must have a tool to state identity (1) in the context of stuffle products

or, more generally, deformed shuffle products (this deformation is, indeed, a
perturbation).
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Introduction.

© We have explained, firstly how to extend polylogarithms

. z™
]’_11(5].7 o0 -Sr) = Z W for |Z| <1 (2)

m>m>..n,>0 L 7

They were a priori coded by lists (s1,...s,) but, when s; € N, they admit
an iterated integral representation and are better coded by words with
letters in X = {xo,x1}. We will use the one-to-one correspondences.

(s1,...,5) €N < X5171X1 ... xg’71x1 EX'x & VYo ...¥, €Y (3)

o Li(s)[z] is Jonquiere and, for (s) > 1, one has Li(s)[1] = ¢((s)

o Completed by Li(x§) = log 16 (2) this provides a family of C-independant
functions (linearly) admlttlng an analytic continuation on the cleft

plane C\ (] — o0, 0] U [1, +o0[) or (C\/{\E),/l}.
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Introduction: Recap of the facts.

@ Starting from ((s) = >_,, L (R(s) > 1)
@ and the multiplication of two of these

(@)(2) = Y e = (51,9 + a1 4 92) + (o2, 51)

ny,np>1 172

@ then several of them, then mixing this with classical polylogarithms defined,
for k >1,|z| <1, by

n n

. z" . z" : z
—log(l —z) = Li; :ZF Li, :ZF ... Lig(2) :Z?
n>1 n>1 n>1
© We obtained quantities called polylogarithms

m

5 4
o )= D = 2l <1

nm>...>n>1 1"k
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Introduction: Recap of the facts/2

@ They satisfy the recursion (ladder stepdown)
d . . .
ZaLlysl”'ysk = LI}’slfln'}’sk if s >1
d . . .
(1- Z)EL’y1ys2~--ysk = Liy, .y, ifk>1 (4)
which, with s; € N>1, k > 1, ends at the “seed”
. . 1
Liy,(z) = Lix(2) = Iog(ﬁ) (5)

@ For the next step, we code the moves zjz (resp. (1 — z)%) - or more

precisely sections fo fs) ds (resp. fz fs) Zds) - with xo (resp. x1).
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Tree of outputs (so far).

3 2 2
Xy X0Xq X1X0X1  xgXx1

N/ N/

XpX1

Some coefficients with X = {xp, x1 }; up(z) = %: u1(2) = 7

(—log(1 — 2))"

(s 1) = (5 | x0x) = Lia(2) = Liyg (2) = > =
- - — Liyox (2) =
! n! ~~— o s
cl.not. P
n ny
2 . . z . . z
(51 xgx) = Lis(2) =Lip (2) = > —= i (S xx0x) = Lixgxgx (2) = Lip 2(2) = > —
cl.not. 0 n>1 " ny>np>1 nin;
m
2 . . z
(S | xoxq) = LIXOX%(Z) = Lip 1)(2) = T
np>np>1 M2
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Introduction: Review of the facts/3

@ Calling S the prospective generating series

S=Z<S|W>W;X={X0,X1} (6)
wEX™ ()
V. Drinfel'd [1] indirectly proposed a way to complete the tree:
d(s) =(2+%).5 (NCDE)
{ Iimig}? S(z)eolos(z) = Ly@yxy (Asympt. Init. Cond.) (7)

from the general theory, this system has a unique solution which is precisely
Li (called Gp in [1]) ; S — d(S) being the term by term derivation of the
coefficients.

@ Minh [2] indicated a way to effectively compute this solution through
(improper) iterated integrals (see also [13]).
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Explicit construction of Drinfeld's Gp.

Given a word w, we note |w|y, the number of occurrences of x; within w

d

Joaf(u)®= if w=xu

Z = 1-s
%) Jfag(u)Z if w=xouand |uly, =0 (w € x3)
Joag(u)Z if  w=xouand |uly, >0 (w € xX*x1x})

The third line of this recursion implies

2( n) _ /Og(z)n

Q| X
0\~*0 nl

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =" . af(w)w is Li (Go in [1]).
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Complete tree of outputs.

X7 X0X12 X1X0X1 ngl x12xo XpX1X0 xlxg xg
A N/ N/ N/
b XoX1 X1X0 x3
X1 X0

As an example, we compute some coefficients

log(z —log(1 — z))"
(Li| ) = g[sl) (L) = ( g(nl )
(Li | xox1) = Liz(z) = > % i (i xaxe) = (Li | xg HIxp — x0x1)(2)
n>1 "
(Li | xgx1) = Lis(z) = > % i (Li | xax0) = (—log(L — 2))log(2) — Liz(2)
n>1
z" 1
(Lilxg 'x) =Lin@) =3 = i (Lilxix) = (Li| >(qIx Mx) — (x Mxoxt) +x0%)
n>1 " 2
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Li From a NCDE.

The generating series S = ) . Li(w) satisfies (and is unique to do so)

dS)=(2+).5

z

(8)
ima.e —xplog(z) —
||mz€£ S(Z)e IH(Q)(<X))
with X = {xp, x1}. This is, up to the sign of xq, the solution Gy of
Drinfel'd [13] for KZ32. We define this unique solution as Li. All Li, are
C- and even C(z)-linearly independant (see CAP 17 Linear independance
without monodromy [24]).

?In fact, the path from KZ3 to these equations is done through a
counter-homogenization (see Vu's forthcoming talks).
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Domain of Li (global, definition)

In order to extend indexation of Li to series, we define Dom(Li;2) (or
Dom(Li)) if the context is clear) as the set of series S =) S,
(decomposition by homogeneous components) such that > - Lis,(z)
converges unconditionally for compact convergence in Q. One sets

Lis(z Z Lis,(z (9)

n>0

Starting the ladder

£
.
N

(C(X), mr,1x-) ————— C{Li, }wex-

| |

(COX), 1, 1x) [ (=) 64T —22% Ca{Lin}wexc

|

Examples

LIX(;‘(Z) =2z, LIXT(Z) = (]_ — Z)_]-’ Liax6«+ﬁxl* (z) — Za(]_ _ Z)_ﬁ
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Main difference between aZ and af.

@ Here, we still work with
Q=C\(] —00,0]U[1,4+00]) and up =1/z, vy =1/(1 — 2)

Q@ o, af: X* — H(Q) are both shuffle characters (see below) but

zp?

they satisfy different growth conditions.

Q With o, (20 € ). — Let us denote £(f2) the set of compact
subsets of Q. One can show that, for all K € R(Q2), there exists
My > 0 s.t. 1

(Yw e XT)( || {aZ, | w)llk < MKW )

© This entails that, given a rational series T = »_ -, T, (where
Tn =3 w=n(T | w)), the series, for all K € &(%2)
Dl e, | Ta)llk < +o0

n>0

@ We will say that T € Dom(aZ)) and set o (T) = >, oz | Ta

(10)

).

15/73



Main difference between aZ and of/2

@ In fact, of satisfies no condition of the type (10) because, with xjx;
(Jonquiere branch), we can see that

@ forn>1, (xix1)n = xé’_lxl, then
(Li(2) [ ™) = (0Z, | g7 a) = dn(z) = > 7= (11)

@ The series ) ., J, does not converge (even pointwise) on ]0, 1|
because, B
x €]0,1[= Jn(x) > x

@ So, what can be salvaged ? — in fact, conditions (growth or other)
implying absolute convergence at the level of words is hopeless because
of restriction and we would like to preserve

Li(x)=2z; Li(x{)=1/(1—2); Li(Swm T) = Li(S).Li(T) (12)

and then Li ((xo + x1)*) = z/(1 — 2)
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Main difference between aZ and of/3

® 6 6

Then, we must have a criterium (for admitting a series in Dom(Li))

Fortunately #(2) shares with finite dimensional spaces the following
property

Unconditional convergence <> Absolute convergence (13)

Unconditional convergence for a series ) - u, means
convergence “independent of the order” i.e. that ) ¢ ty(n)
converges whatever o € Gy.

Absolute convergence is wrt the continuous seminorms of the space.
Time is ripe now to speak of the standard topology of H().
For K € £(f2), we introduce the seminorm (norm if Q is connected

and K° # ()

Ifllk = sup [f(2)|
zeK
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Initial topologies.

@ We now use a very very general construction, well suited both for
series and holomorphic functions (and many other situations), that of
initial topologies (see [34] and, for a detailed construction [6], Chl

§2.3)
resk

% (K;; C)

resy,og

X =———— H(Q) ———— F(K;;C)
% (K;; C)

@ So H(Q) is a locally convex TVS whose topology is defined by the

family of seminorms (|| ||x)ker(q)-
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Topology of H(£2) cont'd.

@ In fact, every Q C C is o-compact, this means that one can construct
a sequence (Kj,)n>1 of compacts i.e. (VK € R(2))(3n > 1)(K C K,)
therefore 7(€2) is a complete (hence closed) subset of the product
Mp>1C(Kn; C) (for the topology on the cube, see a next CCRT).

1
Kn={z€ Q| d(z,z0) <nand d(z,C\ Q) > ;}

)

(D

@ We will see more (step-by-step and starting from scratch) on the
topology of the cube and separability in the CCRT devoted to

convergence questions).
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Domain of Li.

@ If Q#(, H(Q) is not normable because, there are two continuous
operators

al - f—2zf: a: fr—>if
dz

such that [a,a] = Idy;q) (Hint Compute ad,(et).
@ H(RQ) has property (13) (nuclearity).
@ This leads us to the following

Let T € H(Q)(X)), we define (with [S]y == 3,1_,(S | w)w)

Dom(T) = {S € C{(X)) | Z (T | [S]n) cv inconditionally} (14)
n>0

If S € Dom(T), we set (T [S):=3_ 5o(T | [S]n).
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Shuffle properties and domain of Li.

@ In the case when T is a shuffle character, we have

Theorem (GD, Quoc Huan Ngd, HNM [14] for Li)
Let T € H(Q)({(X)) such that

(T|: P—={(T|P)(C(X)—H(Q) (15)

is a shuffle character. then

i) Dom(T) is a shuffle subalgebra of (C{(X)), m, 1xx).

i) (T | S1mSy) = (T | S1)(T | Sp) i.e. S (T |S) is a shuffle character
of (Dom(T), m,1x~) that we will still denote (T | .

iii) Then Im((T | ) is a (unital) subalgebra of H ().

iv) In particular (see infra for an algebraic proof), z = Li(xg) and then,
C[z] C Im(Dom(Li)).
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Open problems and some solved.

[19)

® 0 6 6

()

Do we have H(Q) = Im(Dom(Li)) (= Im(Li)) ? (in other words does
it exist inaccessible f € H(Q) ?)

If o ¢ Q, does 1/(z — z) belong to Im(Li) ? (z0 € Q and z ¢ Q)
(Solved) Are there non-rational series in Dom(Li) ? (answer yes)
(Solved) Is C™t((X)) contained in Dom(Li) (answer no)

What is the topological complexity of Dom(Li) in the Borel
hierarchy (Addison notations, see [25] for details and use the
convenient framework of polish spaces [7], ch IX).

Borel hierarchy: We recall that this hierarchy is indexed by ordinals
and defined as follows

O Asetisin X9 if and only if it is open.

@ A setisin MO if and only if its complement is in X9.

@ Aset Aisin X2 for a > 1 if and only if there is a sequence of sets

A1, Ao, ... such that each A; is in I'Igl_ for some a; < awand A= JA;.
@ Asetisin A if and only if it is both in £% and in N2.
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Open problems and some solved /2
@ From slide (11), one can remark that the iterated integrals are based on two
integrators, informally defined as

n(f) = /O f(s)lcfS ! el = / f@)% with z € {0,1} (16

t1 is defined and continous on H(2) and g is defined on spanc{Liy }wex-?
(context-dependent) and not continuous [14] on this set (see below).
Problem What is the Baire class of ¢q ?

@ Recall that £(Q2) admits a cofinal sequence (K,)nen of compacts i.e.
(VK € R(Q))(3n € N)(K C K,) therefore H () is a complete (hence
closed) subset of the product M,cnC(Ky; C) .

@ Recall that (see [14] and slide SI.18)

1
Kh={z€Q|d(z,z0) <nand d(z,C\ Q) > -

}.

?It can be a little bit extended, see our paper [14].
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Properties.

Proposition
With this definition, we have
© Dom(Li) is a shuffle subalgebra of C{(X)) and so is
Dom™*(Li) := Dom(Li) N C" (X))
@ For S, T € Dom(Li), we have
Lisg 7 = Lis. LiT

| A

Examples and counterexamples

For |t| < 1, one has (txo)*x1 € Dom(Li, D) (D being the open unit slit
disc and Dom(Li, D) defined similarly), whereas x5xi ¢ Dom(Li, D).
Indeed, we have to examine the convergence of > - Lixsx (2), but, for
z €]0,1[, one has 0 < z < Liysx (z) € R and therefore, for these values
>0 Lixgx (2) = +00. Contrariwise one can show that, for [t| <1,

n

Li(th)*Xl(z) = ZnZl nZTt
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Passing to harmonic sums H,,, w € Y*.

Polylogarithms having a removable singularity at zero

The following proposition helps us characterize their indices.

Proposition
Let f(z) = (Li| P) =", cx-(P | w) Li,. The following conditions are
equivalent

i) f can be analytically extended around zero

i) PeC(X)x; ®&C.1x~

A,

We recall the expansion (for w € X*x; U {1x+}, |z| < 1)

Liy(z
l—z

=> Hryw(N) 2" (17)

N>0

A,
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Global and local domains.

This proposition and the lemma lead us to the following definitions.

© Global domairLs.—
Let ) # Q C B (with B =C\ {0,1}), we define Domq(Li) C C{X)) to be
the set of series S =3 - Sy (with S, =37, _,(S | w) w each
homogeneous component) such that ) _ Lis, is unconditionally
convergent for the compact convergence (UCC) [27].

As examples, we have Qy, the doubly cleft plane then
Dom(Li) := Domg, (Li) or Q2 = B

@ Local domains around zero (fit with H-theory).—
Here, we consider series S € (C{(X)x1 @ Clx-) (i.e. supp(S) N Xxo = 0).
We consider radii 0 < R < 1, the corresponding open discs
Dgr = {z € C| |z| < R} and define

DomR(Li) = {5 = ano Sn S ((C<<X>>X1 D (C].Q)| Z L"S,, (UCC) in DR}

Dom/oc(Li) ‘= Up<r<1 DOmR(Ll)
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Local domains.

@ Local domains: the domain of convergence of Li,,, w € X*x; is

C\ (] — 00, —1] U [1,400[) and these functions are Taylor expandable
around zero. With S =3" -, S, € C((X)), we study the inconditional

convergence of > - Lis,(z) within different open disks
(B(O,O)(r))0<r<1 y
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Properties of the domains.

Q Forall ) # Q C B, Domg(Li) is a shuffle subalgebra of C((X)) and so
are the Dompg(Li).

@ R+ Domg(Li) is strictly decreasing for R €]0, 1].

@ All Domg(Li) and Domy,c(Li) are shuffle subalgebras of C{(X)) and
Ty (Domyoc(Li)) is a stuffle subalgebra of C({(Y)).

© Conversely, let T(z) =)y anz" be a Taylor series i.e. such that

lim supy_, 1o |an|/V = B < +00, then the series
S= Z an(—(—xy) )™= (18)

is summable in C{(X)) (with sum in C{(x1))) and S € Domg(Li) with
R = gi1 and Lis = T(z2).
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Theorem A/2

© Let S € Domg(Li) and S =3 -y Sn (homogeneous decomposition),
we define? N — H . (s)(N) by

Llis_(zz) =) Hys(M)z" . (19)

N>0

Moreover, for all r €]0, R[, we have

> Huy syl < +oo, (20)
nN>0

in particular, for all N € N the series (of complex numbers)
> n>0 Hry(s,) (V) converges absolutely to Hy, (s)(N).

“This definition is compatible with the old one when S is a polynomial.
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Theorem A/3

@ Conversely, let @ € C{(Y)) with Q =", -, Qn (decomposition by
weights), we suppose that it exists r €]0, 1] such that

> [He, (M) < +o0 (21)
n,N>0

in particular, for all N € N, > - Hgq,(N) =¢(N) e C
unconditionally.
Under such circumstances, mx(Q) € Dom,(Li) and, for all |z| < r

Lls Z) =Y n)2", (22)

N>0

v
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Insightful fathers.

Figure: Jacques Hadamard and Paul Montel.
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Local domains: morphism properties.

Corollary (of Theorem A)

Let S, T € Dom'¢(Li), then

Sm T € Dom'®“(Li), x(my(S)wmy(T)) € Dom'°(Li)
and for all N > 0,

Lismt = LisLit; Lii. = lyq), (23)
Hry(s)ywmy (1) (N) = Hey(s)(N)Hq, 1y (N). (24)
Lis(z) Lir(z) _ Lingry(s)wn(m)(2)
l—z®1—z - 1—z ' (25))
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Continuing the ladder

—~~

[ S
)

Li .
(C(X), m, 1x)[x5, (—x0)*, x¢] ——» Cz{Liw }wex~

We have, after a theorem by Leopold Kronecker,

Ccrat () = { g } P,QeClx]

Q(0)0

C(X), m, 1x-) —=* % C{Liy }wex-

(26)
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On the right: freeness without monodromy.

Theorem (Deneufchatel, GHED,Minh & Solomon, 2011 [12])

Let (A, D) be a k-commutative associative differential algebra with unit and C be
a differential subfield of A (i.e. 9(C) C C). We suppose that k = ker(0) and that
S € A(X)) is a solution of the differential equation

d(S)=MS; (S|1)=1with M= ux € C{X) (27)

xeX

(i.e. M is a homogeneous series of degree 1)
The following conditions are equivalent :

© The family ((S | w))wex~ of coefficients of S is (linearly) free over C.

@ The family of coefficients ((S | X))xexu{ix-} is (linearly) free over C.
© The family (ux)xex is such that, for f € C et ax € k

Zaxux (Vx € X)(ax =0).

xeX
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A useful property.

[mathoversflow I T I

Independence of characters with respect to polynomials

| came across the following property :

5 Let g be a Lie algebra over a ring k without zero divisors,
U = U(g) be its enveloping algebra. As such, U is a Hopf algebra and e, its counit, is the only
character of i — k which vanishes on g.

SetU. = ker(e). We build the following filtrations (N > 1)

1 Uy =ud¥=u

N times
and
Uy =Uy = {f €U |(Vu e Uni)(FW) = 0)}  (2)

the first one is decreasing and the second one increasing. One shows easily that (with © as the
convolution product)

. olf* -

Uy oUy CUy.,

so thatU3, = Un>1U,, is a convolution subalgebra of *.

Now, we can state the

Theorem : The set of characters of (U, . , 13/) is linearly free w.r.t. 2, .

asked 1 month ago
viewed 106 times
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Revisiting the *Hot Network Questions’
feature, what are our shared goals for

Who cut the cheese?

Responsive design released for all Beta &
Undesigned sites

Related

What does the generating function
2/(1 - e*) count?

Is there a canonical Hop structure on the
center of a universal enveloping algebra?

BB 0o swunted exponential series give projections
of a cocommutative biaigebra on ts coradical
fitzation?

BB ovarom groups... notvia peseniatons

3 How a unitary corepresentation of a Hopf C*-
algebra, deals with the antipode?

14 Rialoehras with Honf rectricted (or Sweedlen

35/73

35/73



Left and then right: the arrow Liﬁl).

Proposition

i. The family {x§, x{'} is algebraically independent over (C(X), m, 1x+)
within (C{X )%, m, 1x+).

i. (C(X), m,1x+)[x3, x5, (—x0)*] is a free module over C(X), the family
{0) ™ m () ™"} (k nezxn is @ C(X)-basis of it.

iii. As a consequence, {wm (x¢) ™ m (x;) ™} ,ex~ is a C-basis of it.
(k,])EZXN

iv. Lil" is the unique morphism from (C(X), m, 1x~)[x5, (—x0)*, x{] to
H(K2) such that

=2z (—x0) =z tand xf — (1 -2)7t

v. Im(LiY) = Cz{Liw }wex-.
vi. ker(Li") is the (shuffle) ideal generated by xg mxi — x} + Lx-.
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Other combinatorial instances of MRS factorisation.

Shuffle product governs Poly- and Hyper- logarithms, stuffle governs
Harmonic functions and one can see that other forms of perturbated
shuffles govern other types of special functions.

In combinatorics (and computer science), one often uses products? defined
by recursions on words of the form

umyly- = lysmgyu=uand
aumybv = a(umybv) + blaum ,v) + p(a, b)(um,v)

where ¢ : R.X ® R.X — R.X is some associative law.

?as shuffle, stuffle, infiltration, g-infiltration.
G.H.E. Duchamp, J.-Y. Enjalbert, H. N. Minh, C. Tollu, The mechanics of
shuffle products and their siblings, Discrete Mathematics, 340 (Sep. 2017)
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Examples of m,

Name Formula (recursion) @ Type
Shuffle [21] auw bv = a(uw bv) + b(au w v) =0 1
Stuffle [19] T w v = zi(uw 2;0) + 2 (ziuwv) (i, I_.,) = Tiy; I

+ Tigj(uwv)
Min-stuffle (7] it o 20 = (U = 50) + 25 (Tiu o v) Q(xi, ;) = —Tiyj 111
— Tigj(u=v)
Muffle [14] T x50 = i (uw 250) 4+ 25 (70w v) P(xi,T5) = Tixj I
+ Tixj(wwv)
g-shuffle 3] [z w gzj0 = i(uw g250) + 25 (20w @ gv) elwi, 75) = qxig; I
+ qis (uw gv)
g¢-shuffle, Titt o 70 = 2i(U w gx;0) + 25 (Tiu @ gv) (i, ;) = ¢ xig I
+ qi'jliﬂ'(u = qV)
IDTAG(T, ) (10
(non-crossed, auw by = a(uw bv) + b(auw v) p(a,b) = q!.nubl(wb) 1I
non-shifted) + ¢1la b(uw v)
g¢-Infiltration [12] aut bv =a(ut bv) + blau 1 v) ©(a,b) = gdapa 111
+ gbapa(u 1 v)
AC-stuffle auw,bv = a(uw, bv) + blauw, v) ¢(a,b) = @(b,a) v
+(a,b) (uw, v) #(p(a,b), 0) = (a, (b, c)
Semigroup- Teuwy T = Ty(uwy T0) + Ts(Tpu sy v) (24, T5) = Teys 1
stuffle + x5 (wwy v)
¢-shuffle auw, b = a(uw, bv) +blau w,v) ¢(a,b) law of AAU v

+ pla,b)(uwyv)

Of course, the g-shuffle is equal to the (classical) shuffle when ¢ =

0. As for the ¢-

infiltration, when ¢ = 1, one recovers the infiltration product defined in
Many shuffle products arise in number theory when one studies polylogarithms, har-

monic sums and polyzétas:
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it was in order to study all these products that two of us



One can see the product um v as a sum indexed by paths (with
right-up-diagonal(ne) steps) within the grid formed by the two words (u
horizontal and v vertical, the diagonal steps corresponding to the factors
¢(a, b))

N4
y1
Y2
[ 4
A y3 Y2 ¥5
For example,
B
»n
the path reads ©(y3, y2)y2ysy1
Y2

A y3 y2 ¥
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Y1

the path reads y3¢(y2, y2)(ys, y1). We have
Y2

A y3 y2 ¥

the following

Theorem (Radford theorem for m )

Let R be a Q-algebra (associative, commutative with unit) such that
v : R(X)® R(X) = R(X)

is associative.

If X is totally ordered by <, then (Lyn(X)™¢%)_ cnewmx) is a linear
basis of R(X).

In particular if, moreover, ¢ is commutative, then (R(X), m,,1x~) is a
polynomial algebra with Lyn(X) as a transcendence basis.
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Dualizability

If one considers ¢ as defined by its structure constants

py) =Y %,z

zeX

one sees at once that mr, is dualizable within R(X) iff the tensor 7% | is
locally finite in its contravariant place “z" i.e.

(Vz € X)(#{(x,y) € X*|n%, # 0} < +00) .

Remark

Shuffle, stuffle, infiltration are dualizable. The comultiplication associated
with Generalized Lerch Functions and T are not (see HNM's talk).
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Dualizability /2

In case m, is dualizable, one has a comultiplication
A, R(X) = R(X) ® R(X)
(with structure constants the transpose of the tensor 75 ). The following
By = (R(X), conc,1x+, A, €) (28)

is a bialgebra in duality with B, (not always a Hopf algebra although the
letter was so — ex. m, =T4 i.e. the g-infiltration).
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Associative commutative p-deformed shuffle products

Theorem (CAP 2015)

Let us suppose that ¢ is associative and dualizable. We still denote the dual law
of my by Am, : R(Y) — R(Y) ® R(Y), BZ = (R(Y),conc,1y-,Am ,€) is
a bialgebra. Moreover, if ¢ is commutative the following conditions are equivalent

i) B} is an enveloping bialgebra. (CQMM theorem)
i) B is isomorphic to (R(Y), conc, ly~, A, €) as a bialgebra.

)
iii) Ay is locally nilpotent (i.e. ¢ is moderate).
)

iv) For all y € Y, the following series is a polynomial.

1yt
M) =Y+ Xm EF— ey Y 00 x)) 3

In the previous equivalent cases, ¢ is called moderate.

In this case, one can straighten the m, product and imitate Lyndon basis
computation in order to get a basis of the primitive elements and then have an
effective calculus for Schiitzenberger factorisation.
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Bialgebra structure

Theorem

Let R be a commutative ring (with unit). We suppose that the product ¢

is associative, then the algebra (R(X), m,,1x~) can be endowed with the
comultiplication Aconc dual to the concatenation

conc Z uRv (29)

and the “constant term” character e(P) = (P | 1x~).
(i) With this setting, we have a bialgebra ?

B, = (R(X), my, 1x+, Aconc, €) (30)

(ii) The bialgebra (eq. 30) is, in fact, a Hopf Algebra.

“When |X| > 2, noncocommutative.

44/73



The I, technology.

Q@ We have the following theorem
Theorem. — Let B = (B, u,15,A,¢) be a bialgebra, then
A) B = ker(e) & k.13 and the projectors are
i) h— I.(h) = h—e(h).15 on ker(e) = B,
I) hr—>e() (h)lBonklg
B) If I, is locally nilpotent i.e.

(Vb€ B)(IN = 0)(Vn = N)(I:"(b) = 0)

then B is a Hopf algebra.
C) (CQMM) If Q@ C k and A is cocommutative, then TFAE
i) B is an enveloping bialgebra.
i) B=U(Prim(B)).
i) A+ = 19?0 A'is locally nilpotent.
) !

iv) Iy is IocaIIy nilpotent.

(31)
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CQMM: examples and counterexamples.

@ Let k be a ring, S be a subsemigroup of N and, for s € S,
A&—J (yS) = Zp+q:5yp ®yQI then

B =B = (k(Y),conc,ly«,Au,€) (32)

is a bialgebra.
i) If S =N>; (classical stuffle) and k = Z B is not an enveloping
algebra.
i) With S =N and even k = Q (we called this alphabet Y in the Ph.
D’s), By is not even a Hopf algebra.
© Remarks. —
i) (Weak form of the CQMM) With @ C k and B, connected, graded and
cocommutative.
Rq. — This, strictly weaker, form doesn't cover classical enveloping
algebras as U(sh(k)).
ii) In the equivalent conditions of CQMM, log(/) = log(e + /) is the 7

projector B — Prim(B).
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Enveloping algebras in context.

Q Let Cierr, Crigne be two categories and F : Crigns — Clerr @ (covariant) functor
between them

C[eft < F Cright
U ::777{ 777777777 > V
P N Tf
5
Free(U)

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U € Cer, of a pair (ju, Free(U)) (with ju € Hom(U, F[Free(U)]),

Free(U) € Cright).

(Vf € Hom(U, F[V])) (3! f € Hom(Free(U), V)) (F(f)oju = f)

@ In the case of enveloping algebras Cje = k — Lie, Cyignr = k — AAU and
F(A) is the algebra A endowed with the bracket [x, y] = xy — yx thus a Lie
algebra.
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Limiting processes and topologies

o

o

We have seen last time some limiting processes (like Riemann integral
and Lebesgues y-axis sampling) which are not reducible to sequences,
(we will return to this point later on).

In order to understand deeply and master our calculations with
group-like series (of all sorts not only for the co-shuffle coproduct),
we have to deal with closed subgroups of the Magnus group.

Let us first examine and analyse some simple limits of sequences of
series.

We first address the following identity

lim (1+ %)” = ¢ (33)

n—-+400

Which can be considered within the formal realm (i.e. LHS, for each
n, within C(z) = C|z] and RHS within C({(z)) = C[[z]]) or in H(C)

with compact convergence.
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——
Compact convergence.

Figure: The one-parameter group f(x) = e? as the limit of f,(x) = (14 x/(2n))".
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Limiting processes and topologies/2

© In fact, a variant of (33)? was used by Montgomery and Zippin to solve
Hilbert's fifth problem [?].

@ (Informal) definition:® A one-parameter group, is a correspondence G to
some group such that

G(tl + tz) = G(tl)G(tz)

@ In fact, we are interested in creating a new theory of
@ Paths drawn on groups of series
@ One-parameter groups on infinite-dimensional Lie groups of series and

their combinatorics.
©® We use an application to stuffle identity, introducing a “Holomorphic
functional calculus” [22] in order to get and prove non-trivial identities

within Hausdorff groups.

?In fact, the construction of one-parameter groups as limits of this kind.

bInformal, means here “at the level of general idea”.
50773



Every path drawn on the group is a solution of
y'(t) = m(t)y(t
Lie Group G

777777
2002530505005000007

-1

Figure: For one-parameter groups y'(t)y(t) "= c is constant.
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An identity in the stuffle algebra

@ We begin by an application on the Hausdorff group of a particular bialgebra.
Here, with Y = {y;}i>1

B=Bu = (C(Y),conc,lyx, Ay, ¢€) (34)
—_———
algebra part

and we first establish an identity within the stuffle algebra, taking “stars of
the plane” as arguments.

O aiv)y w QO _Biy) = aivi+Y Bivi+ Y aifjyi)" (35)

i>1 jz1 i>1 jz1 ihj=21

As the alphabet is infinite, we use here homogeneous series of degree one as
>_i>1@iYi. These sums are not necessarily finite (they are, in general, a
series) but can be so. Series like this form the vector space CY (called by
Pr. Schiitzenberger “the plane of letters"), noted, in our works, C.Y asit s
the completion of C.Y = C(Y) for some topology.

52/73



An identity in the stuffle algebra/2: Generalities

Q In fact, identity (35) describes completely the composition of characters (i.e.
the composition within =(B)). In fact B (see its elements in eq. 34) is a
conc-bialgebra and conc-characters are exactly “stars of the plane” i.e., for
generic X', of the form (3, ., ax x)*.

@ We recall that Ay (yn) = ¥n ®@1+1Qya+ D pa>1 ¥p © ¥q.

p+q=n
@ |In fact this comultiplication is a particular case of Ay, comultiplications
which read, for each letter x € X' (see [?]),

Am, (x)=x®1+1®x+ Z'yx’zyébz (36)
y,zeEX

where the tensor 7Y% is locally finite in x.
@ For these conc-bialgebras, we have in general

(Zay}/)*m@(z:ﬁzz)*:(Zayy+ZﬁZZ+ Z ayﬁz%\:ﬂzx)*

yeX zeX yeX zeX X,y,zeX
(B37Y3




An identity in the stuffle algebra/3: Generalities

@ One proof of (37) rests on the fact that the algebra is generated by X" and,
then, we have just, knowing the form of the LHS-RHS, to test equality on
letters. Let us recall some definitions and properties (k is a commutative
ring)

@ Let B=(B,u,15,A,¢) be a bialgebra.

® We call =(B) the set of characters of (B,, 1, 15) (with values in k)

© When C is another k-algebra, we will note =(B;C), the set of
characters of B with values in C.?

@ One can show that, if C is commutative, characters compose through
convolution. Indeed, the dual BY (now C = k) is an algebra under *A
(which will be noted ®) and =(B) C BY is closed under ®.

“This set is none other than the Hom-set of the algebras, i.e. we have truly

E(B; C) = Homk_AAU (B, C)

but the point of view is commpletely different.
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An exercise about these generalities

@ Let k be a commutative ring and B = (B, u, 15, A, €) be a k-bialgebra. As
A: B— B®B, we have 'A : (B® B)Y — BY

@ (Q1) Explain the arrow
can: B' 9B’ — (BoB)" (38)

and prove that ‘Ao canis a law of k — AAU in BY (we will note this law ®).

@ (Q2) i) Let C be a k— CAAU, prove that =(B) is a submonoid of (BY, ®, €).
ii) Extend these results to =(B;C) (where C is an object of k — CAAU).

@ (Q3) i) For t € C, compute (2ty; + t2y,)* under the form of an exponential.
ii) Recall that “Stars of the plane” are conc-characters and prove that, for
t #0, (yv7, (2tys + t2y2)*, y3) are algebraically independent over
(C(Y), w1, 1y«) within (C{Y)), w1, 1yx).
iii) More generally, prove that, if Q; € C.Y are Z-linearly independent, then
(Q7)ies are algebraically independent.
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Exercise (cont'd)

@ Before proving the (very hard) question (iii) of exercise @ above let us give
a bit of a categorical motivation.

@ H(RQ) is a C-vector space, in fact a C — CAAU (and hence all derived
substructures: monoid and the like). Then, if one has a correpondence (a
set-theoretical map)

Gor 1 X — H(Q) (39)

(be it for “inputs” or everything else, arbitrary) one can extend it to C(X)

as we do for a7, ©, .... One gets at once an extension

bc_pau: CX) — H(Q) (40)
@ The question will be addressed next time will be to extend (40) to (certain)
series.

@ On the RHS of (40), we have a space with a topology (apparently, the only
reasonable one, see [26]). On the LHS, there are several topologies.
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An algebraic one-parameter group for stuffles/1

@ (Holomorphic functional calculus [22]) Let S € CL((Y)) (sometimes
called "a proper series”) and T =3 -, a,z" € C[[z]], we first
remark that (2,5 "),>0 is “summable” (see definition below,
equation (41) and use the weight).

A family of series (S;)ies in k(X)) is said summable if, for all w € X*, the
map i +— (S; | w) is finitely supported. In this case the sum of the family

is defined by
DS =YD (SiIwmw (41)

iel wex* jel

v

@ For T € C|[[z]] and S € C,(Y)), we note

Tuw(S):=) (T|2")§*" (42)

n>0
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An algebraic one-parameter group for stuffles/2

@ For S € CL(Y)), we have
log ., (1yx +S) exp., (S) — 1y« belong to C{(Y)) and (43)
expu (log i (Ly +5)) = 1y- + S logu, (expu (S)) = J44)

@ (Commutation and polynomial type coefficients) For S, T € C({(Y))
and P(z) € C|z], we have
exp (S+T)=exp(S)w exp,(T) and (45)
s (P(2).5) € CIAI(Y) (46)

%(expbu (P(2).5)) = (P'(2).S) w exp, (P(2).S) (47)
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An algebraic one-parameter group for stuffles/3

@ Now, we code “the plane” by Umbral calculus.

@ Let x be an auxiliary letter, The map

ngbra : Z o X" Zan Yn (48)

n>1 n>1

from C4[[x]] to C.Y is linear and bijective. We will call mbra its
inverse.

@ For S, T € C4[[x]], one can show that
(my™2(S))" w (my™P(T))* = (ay™2((1+ S)(L+ T) —1))* (49)

@ Therefore, for z € C and T € C[[x]], one sets

G(z) = (wy™(e*T —1))" (50)



An algebraic one-parameter group for stuffles/4

@ From (49), (47) and (35) one gets, for z1,2, € C,
G(z1 + ) = G(z1) = G(22) ; G(0) =1y~ (51)

(then G can truly be called a “stuffle one parameter group”).

@ We check that

and deduce that

z.wYme(T)

G(z) = ey (53)

@ What precedes shows us that, for each P =3, (P | y;) yi € C.Y

log s, (P*) = my™(log(1 + w2 (P))) (54)

X
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An algebraic one-parameter group for stuffles/5

@ |In particular, using (54), we show that

() = epw (ZM) (55)

n
n>1
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Limiting processes and topologies/3

@ Our first examples are taken in C[[z]] = C((z)).
@ First, we return to $* (S is without constant term) and (1 + £)".

@ In the first case, calling w(S) the minimal length of supp(S) (and still
supposing (S | 1x-) = 0) we have w(S") > n and then (5"),>¢ is summable.

& In the second one, one has

—1 —1
(1+E)":1+2+Mzz+...:l+z+uzz+... (56)
n n n
the series of differences T, = (1 + ;%7)""! — (14 £)" is NOT summable as
Ty = ﬁf + ... and then for all n € N, w(T") = 2. What happens in
fact is that, for all N € N, .
limpooo((14 2)" | 2V) = o

so that, even if the series of differences is not summable, the limit exists.
This term-by-term topology (which is the product topology) is called
“Treves Topology" in [14] (see [38] Ch10 Example III).
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Concluding remarks.

@ Extending the domain of polylogarithms to (some) rational series
permits the projection of rational identities. Such as

(ax)"m(By)* = (ax+ By)*

@ The theory developed here allows to pursue, for the Harmonic sums,
this investigation such as

(ayi)" w (By;)" = (ayi + By + aByiv))”

© We have, on the left, spaces equipped with Krull ultrametric
convergence and a nice setting on the (topological) Magnus and
Hausdorff groups. On the right, we have adapted domain theories
with identities between polylogarithms and harmonic sums.

@ We have discussed general CQMM and its consequences for MRS.
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and a lot of (machine) computations.
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“The unfolding of new ideas in physics is oten ted to the development of new combinatorial
methods, and conversely some problems in combinatorics have been successfully atiacked -
using methods inspired by statistical physics or quantum field thery. i
“The jounal is dedicated to publishing high-quaity orginal research aricles and survey aricles  Conbinaoics
in which combinatoics and physics interact n both directons. Combinatorial papers shouldbe ~ Fscsind
motivated by potential appiicatons to physical phenomena or modes, while physics papers

should contain Some interesting combinatorial development

Both rigorous mathematical proof and heuristc physical reasoning have a plac

but each must be clearly labeled. Definitions and proofs should be presented with the:
precision and rigor that ae expected in a mathematics joumal. Conjectures based on hetristic
physical arguments and/or numerical evidence are warmly encouraged, but they should be
clearly labeled as such and should be stated s precisely as possible.

Authors should remember that readers of the journal will come from a wide variety of
backgrounds, both mathematical (not only combinatorics but also algebra, topology, geometry
analysis, probabilty, etc) and physical (quantum fied theory, statisical mechanics, quantum
graviy etc). Therefore, authors should wite with such a diverse audience in mind and shoud
take care to provide, inthe introductory section of thir aricle, a clear statement of the
problem to be studied and the mathematical andior physical background from which t arses.
Authors are also encouraged to provide, inthe second section of the artcle, a brief
pedagogical review of the mathematical or physicaltools that will be used in their work.

“The lst ofspecific subject areas n which anicles are anticipated includes:

« Combinatorics of renormalization

+ Combinatorics of cluste, viral and related expansions

+ Discrete geometry and combinatorics of quantum gravity

+ Graph polynomials and satistical-mechaics models

+ Topological graph polynomials and quantum field theory

« Physical applications of combinatorial Hopf algebras, matroids, combinatorial species,
and other combinatorial structures

« Exact solutions ofstaisicabmechanical models

+ Combinatorics and algebra of inegrable systems

« Computational complexity and its relation with statistical physics

+ Computational/algorithmic aspects of combinatoral physics

 Interactons of combinatorial physics with topology, geometry, pobabilty theory, or
computer science
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